MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Tuesday 19 November 2013 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics SL information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]

Consider the infinite series $\sum_{n=1}^{\infty} \frac{2}{n^{2}+3 n}$.
(a) Use a comparison test to show that the series converges.
(b) (i) Express $\frac{2}{n^{2}+3 n}$ in partial fractions.
(ii) Hence find the value of $\sum_{n=1}^{\infty} \frac{2}{n^{2}+3 n}$.
2. [Maximum mark: 9]

The general term of a sequence $\left\{a_{n}\right\}$ is given by the formula $a_{n}=\frac{\mathrm{e}^{n}+2^{n}}{2 \mathrm{e}^{n}}, n \in \mathbb{Z}^{+}$.
(a) Determine whether the sequence $\left\{a_{n}\right\}$ is decreasing or increasing.
(b) Show that the sequence $\left\{a_{n}\right\}$ is convergent and find the limit L.
(c) Find the smallest value of $N \in \mathbb{Z}^{+}$such that $\left|a_{n}-L\right|<0.001$, for all $n \geq N$.
3. [Maximum mark: 19]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x+\sqrt{x y}}$, for $x, y>0$.
(a) Use Euler's method starting at the point $(x, y)=(1,2)$, with interval $h=0.2$, to find an approximate value of y when $x=1.6$.
(b) Use the substitution $y=v x$ to show that $x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v}{1+\sqrt{v}}-v$.
(c) (i) Hence find the solution of the differential equation in the form $f(x, y)=0$, given that $y=2$ when $x=1$.
(ii) Find the value of y when $x=1.6$.
4. [Maximum mark: 13]

Let $g(x)=\sin x^{2}$, where $x \in \mathbb{R}$.
(a) Using the result $\lim _{t \rightarrow 0} \frac{\sin t}{t}=1$, or otherwise, calculate $\lim _{x \rightarrow 0} \frac{g(2 x)-g(3 x)}{4 x^{2}}$.
(b) Use the Maclaurin series of $\sin x$ to show that $g(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{(2 n+1)!}$.
(c) Hence determine the minimum number of terms of the expansion of $g(x)$ required to approximate the value of $\int_{0}^{1} g(x) \mathrm{d} x$ to four decimal places.
5. [Maximum mark: 9]

A function f is defined in the interval $]-k, k\left[\right.$, where $k>0$. The gradient function f^{\prime} exists at each point of the domain of f.

The following diagram shows the graph of $y=f(x)$, its asymptotes and its vertical symmetry axis.

(a) Sketch the graph of $y=f^{\prime}(x)$.

Let $p(x)=a+b x+c x^{2}+d x^{3}+\ldots$ be the Maclaurin expansion of $f(x)$.
(b) (i) Justify that $a>0$.
(ii) Write down a condition for the largest set of possible values for each of the parameters b, c and d.
(c) State, with a reason, an upper bound for the radius of convergence.

