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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 

with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 

found from a graphic display calculator should be supported by suitable working.  For example, if graphs 

are used to find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, 
some marks may be given for a correct method, provided this is shown by written working.  You are therefore 

advised to show all working.

1. [Maximum mark:  10]

Consider the infinite series 
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(a) Use a comparison test to show that the series converges. [2]

(b) (i) Express 
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 in partial fractions.

(ii) Hence find the value of 
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2. [Maximum mark:  9]

The general term of a sequence { }na  is given by the formula e 2
,
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(a) Determine whether the sequence { }na  is decreasing or increasing. [3]

(b) Show that the sequence { }na  is convergent and find the limit  L . [2]

(c) Find the smallest value of N +∈�  such that | | 0.001na L− < , for all n N≥ . [4]

3. [Maximum mark:  19]

Consider the differential equation d

d

y y

x x xy
=

+

, for , 0x y > .

(a) Use Euler’s method starting at the point ( , ) (1, 2)x y = , with interval 0.2h = , to find an 
approximate value of  y  when 1.6x = . [7]

(b) Use the substitution y vx=  to show that 
d

d 1

v v
x v

x v
= −

+

. [3]

(c) (i) Hence find the solution of the differential equation in the form ( , ) 0f x y = , given 

that 2y =  when 1x = .

(ii) Find the value of  y  when 1.6x = . [9]
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4. [Maximum mark:  13]

Let 2( ) sing x x= , where x∈� .

(a) Using the result 
0
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lim 1
t

t
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= , or otherwise, calculate 
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−
. [4]

(b) Use the Maclaurin series of sin x  to show that 
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(c) Hence determine the minimum number of terms of the expansion of ( )g x  required to 
approximate the value of 

1

0
( )dg x x∫  to four decimal places. [7]

5. [Maximum mark:  9]

A function f  is defined in the interval ] , [k k− , where 0k > .  The gradient function f ′  exists 

at each point of the domain of f .

The following diagram shows the graph of ( )y f x= , its asymptotes and its vertical symmetry 

axis.

y

xk�k

(a) Sketch the graph of ( )y f x′= . [2]

Let 2 3( )p x a bx cx dx= + + + +… be the Maclaurin expansion of ( )f x .

(b) (i) Justify that 0a > .

(ii) Write down a condition for the largest set of possible values for each of the 
parameters  b ,  c  and  d . [5]

(c) State, with a reason, an upper bound for the radius of convergence. [2]


